• Skip to main content
CosmiqWorks
  • cosmiqworks-logo-r@2x
  • Projects
  • Blog
  • Podcasts
  • Resources
  • About
  • Contact
  •         

RarePlanes

November 5, 2019 by rocky

RarePlanes

Investigating the Value of Synthetic Data to Detect and Classify Aircraft

SEE ALL PROJECTS

RarePlanes is a unique open-source machine learning dataset from CosmiQ Works and AI.Reverie that incorporates both real and synthetically generated satellite imagery.

 The RarePlanes dataset specifically focuses on the value of AI.Reverie synthetic data to aid computer vision algorithms in their ability to automatically detect aircraft and their attributes in satellite imagery. Although other synthetic/real combination datasets exist, RarePlanes is the largest openly-available very-high resolution dataset built to test the value of synthetic data from an overhead perspective. Previous research has shown that synthetic data can reduce the amount of real training data needed and potentially improve performance for many tasks in the computer vision domain. The real portion of the dataset consists of 253 Maxar WorldView-3 satellite scenes spanning 112 locations and 2,142 km^2 with 14,700 hand-annotated aircraft. The accompanying synthetic dataset is generated via AI.Reverie’s novel simulation platform and features 50,000 synthetic satellite images with ~630,000 aircraft annotations. Both the real and synthetically generated aircraft feature 10 fine grain attributes including: aircraft length, wingspan, wing-shape, wing-position, wingspan class, propulsion, number of engines, number of vertical-stabilizers, presence of canards, and aircraft role. Finally, we conduct extensive experiments to evaluate the real and synthetic datasets and compare performances. By doing so, we show the value of synthetic data for the task of detecting and classifying aircraft from an overhead perspective.

RarePlanes also included an experimental portion using an expanded version of the public dataset.  The experiments focused on addressing these two areas:

  1. The performance tradeoffs of computer vision algorithms for detection and classification of aircraft type / model using blends of synthetic and real training data.
  2. The performance tradeoffs of computer vision algorithms for identification of rare aircraft that are infrequently observed in satellite imagery using blends of synthetic and real training data.

The RarePlanes blog series includes 4 on the intial experiments and a penultimate blog featuring the dataset release:

  1. RarePlanes — An Introduction
  2. RarePlanes — Training our Baselines and Initial Results
  3. RarePlanes — Exploring the Value of Synthetic Data: Part 1
  4. RarePlanes — Exploring the Value of Synthetic Data: Part 2
  5. RarePlanes — Dataset, Paper, and Code Release
Download Dataset

Synthetic Data Example

Real Data Example

RELATED POSTS

  • You Only Look Once — Multi-Faceted Object Detection w/ RarePlanes

  • RarePlanes — Dataset, Paper, and Code Release

  • RarePlanes — Exploring the Value of Synthetic Data: Part 2

  • RarePlanes — Exploring the Value of Synthetic Data: Part 1

  • RarePlanes – An Introduction

Filed Under: Current Projects Tagged With: datasets, models

  • Projects
  • Podcasts
  • Blog
  • Resources
  • About
  • Contact

  • Copyright © 2019 · IQT Labs LLC - All Rights Reserved | Terms of Use | Privacy Policy

We use cookies to analyze the usage of our websites and give you a better experience. You consent to our cookies if you click on “Agree” and continue to use our website. Read our Privacy Policy for more information and to know how to amend your settings.AgreePrivacy policy