
MACHINE LEARNING UTILITY MANIFOLDS FOR NOVEL DATASETS

Adam Van Etten

avanetten@iqt.org IQT Labs August, 2020

1. EXECUTIVE SUMMARY

Data is the fundamental currency of machine learning, yet
input data for machine learning projects is often treated as a
nearly immutable resource. Most parties (such as academic
researchers or technology startups) are not highly incentivized
to spend significant effort studying the many nuances of
datasets, and how those nuances inform and impact machine
learning projects. On one end of the research/deployment
spectrum, academic researchers are heavily incentivized to
focus on novel algorithms even when added complexity may
not bring an appreciable increase in performance [1, 2, 3, 4,
5]. On the other end of the spectrum, corporations and gov-
ernment agencies are highly focused on deploying maximally
performant solutions to existing problems. There remains
much to be done towards the center of the spectrum, in the
underserved domain of applied research focused on the inter-
play of machine learning algorithm performance with dataset
quality, quantity, complexity, provenance, and veracity.

Applied research organizations (such as IQT Labs) that
have the ability to operate in the open and the luxury of fo-
cusing on applied research (rather than commercial product
creation or academic grant acquisition) have a unique oppor-
tunity to address this gap. Conducting applied research on
the interplay of machine learning and dataset facets informs
a number of strategic questions, such as what type of sensor
hardware is required for data collection, or how much effort
is required to collect and validate novel datasets.

In the sections below, we discuss in further detail the mo-
tivation and potential impact of applied research focused on
machine learning data requirements and novel datasets. Sec-
tion 2 details the Satellite Utility Manifold, which provides
a case study for manifold research projects by exploring re-
mote sensing geospatial analytics performance along multi-
ple dimensions. Section 3 discusses the many connections
that this concept has to other domains, and which axes (e.g.
data resolution) are universally important. Appendix A de-
tails the value of curating novel datasets, while Appendix B
describes the SpaceNet dataset and challenge series that was
a key enabler of the manifold studies detailed here.

2. THE SATELLITE UTILITY MANIFOLD

The utility of any dataset is dependent on a multitude of vari-
ables. Over the last few years CosmiQ Works (the geospa-
tial analytics team of IQT Labs) has systematically worked
to quantify the utility of satellite imagery datasets, a concept
referred to as the Satellite Utility Manifold. The surface of
the utility manifold has important tactical and strategic ram-
ifications. For example one could compare the tradeoffs of
sensor resolution, collection frequency, and cost (see Figure
1). By quantifying the utility surface and confidence inter-
vals for a variety of axes, the CosmiQ Works team has sought
to inform a number of important questions in the geospatial
analytics domain such as: sensor quality, sensor resolution,
dataset size, and resource requirements. It should be noted
that the majority of the studies detailed below were only pos-
sible due to two large, high quality datasets (SpaceNet and
Rareplanes) that were developed by CosmiQ Works to fill ex-
isting voids, and subsequently open-sourced.

Fig. 1: Satellite Utility Manifold Example. Top: Notional utility
manifold as a function of imaging resolution and revisit rate. Both
utility and cost increase with constellation revisit rate and imaging
resolution. Bottom: Cross-sectional slices of the utility manifold
along the resolution (left) and revisit (right) axes.
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Fig. 2: Object detection performance (object enumeration) as a func-
tion of sensor resolution (from Figure 8 here).

2.1. Sensor Resolution

One method for measuring the utility of satellite imaging con-
stellations is object detection performance. Back in early
2017, CosmiQ Works’ first formal foray into exploring the
utility manifold quantified the effects of image resolution on
vehicle object detection, with the goal of providing a cross-
section of the manifold and informing tradeoffs in hardware
design. This study demonstrated that for the selected dataset,
detection performance was extremely high for objects ≥ 5
pixels in extent.

This early work holds up well against more recent (July
2020) work conducted by industry: compare the object enu-
meration performance of Figure 2 with the final figure of this
Maxar blog. At 60 cm resolution the recent Maxar analysis
records a recall of only 0.03, whereas our analysis in Figure 2
has 35× better performance, with a recall of 0.97. The salient
point here is that while manifold studies are starting to inter-
est industry, clearly much work remains to be done. Further
information is available in the arXiv paper, and blogs on The
DownLinQ [6, 7, 8].

Expanding upon the initial work on resolution, Cos-
miQ undertook a detailed study on the application of super-
resolution techniques to satellite imagery, and the effects of
these techniques on object detection algorithm performance
applied to terrestrial and marine vehicles. Using multiple
resolutions and super-resolution methodologies, this work
showed that super-resolution is especially effective at the
highest resolutions, with up to a 50% improvement in de-
tection scores. Further information is available in the CVPR
EarthVision paper, as well as a series of blogs [9, 10, 11].

2.2. Imaging Band Cardinality

Along with resolution, the number of imaging bands is an
important aspect in the design of imaging sensors. CosmiQ
Works undertook a study to quantify how object detection
performance varies between grayscale, standard RGB, and

multispectral imagery [12], and showed that while RGB pro-
vides a boost over grayscale, multispectral data often pro-
vides diminishing returns. Another study sought to “multi-
spectralize” lower cardinality imagery to add imaging bands
as a means of studying whether detailed spectral information
could be extrapolated from simple sensors [13, 14]. These
studies help inform sensor design, as well as providing a base-
line for algorithm comparison among different data types.

2.3. Limited Training Data

In most machine learning applications, training data is a pre-
cious resource. With this motivation, CosmiQ Works under-
took a Robustness Study to determine how training dataset
size affects model performance in the geospatial domain,
specifically: the task of finding building footprint polygons
in satellite imagery. The study indicated that model perfor-
mance initially rises rapidly as training data is increased, with
diminishing returns as the amount of training data is increased
further. In fact, compared to using the full data set, using just
3% of the data still provides 2/3 of the performance (see Fig-
ure 3). Irregardless of domain, a better understanding of the
relationship between dataset size and predictive performance
has the potential to help guide decision-making surrounding
data collection and analysis approaches. Further details are
available as a booklet, and a series of blogs [15, 16, 17, 18].

Currently, the standard approach for training deep neu-
ral network models is to use pre-trained weights as a starting
point in order to improve performance and decrease training
time, an approach called transfer learning. Given its ubiq-
uity, quantifying the boost provided by transfer learning is
therefore of great importance. A transfer learning study un-
dertaken by CosmiQ Works showed that while pre-trained
weights yielded abysmal results when applied to a new test-
ing corpus, transfer learning using these weights allowed the
model to rapidly (i.e. in the span of ∼ 5 minutes) train on the
new domain, yielding marked improvements in performance;
such findings not only quantify the utility of transfer learning,

Fig. 3: Foundational mapping performance as a function of training
size over multiple data collection paradigms (from Figure 2.1 here).
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but the amount of data required to adapt pre-trained weights
to new environments.

The Rareplanes synthetic data study looked at another im-
portant computer vision problem: how much data is required
to detect rare objects (airplanes, in this case) in a large dataset.
See Section 2.5 for further discussion.

2.4. Data Diversity

While understanding the amount of training data required
is critical for machine learning projects, dataset diversity is
another crucial factor. Geographic diversity is an important
aspect in many datasets, particularly the geospatial domain.
CosmiQ Works investigated data diversity as part of the
aforementioned building footprint robustness study, with rec-
ommendations on whether to increase diversity or targeted
data depending on the scenario. CosmiQ Works also inves-
tigated the geographic diversity required for road extraction
from overhead imagery, quantifying the surprisingly small
performance delta in unseen areas [19].

2.5. Synthetic Data

Rareplanes is a machine learning dataset and research study
that examines the value of synthetic data to aid computer vi-
sion algorithms in their ability to automatically detect aircraft
and their attributes in satellite imagery. CosmiQ curated a
large labeled dataset of satellite imagery (real data), to go
along with an accompanying synthetic dataset generated by
an industry partner (AI Reverie). Along with the dataset, the
Rareplanes project provided insight into a number of axes,
such as the performance tradeoffs of computer vision algo-
rithms for identification of rare aircraft that are infrequently
observed in satellite imagery using blends of synthetic and
real training data (see Figure 4). The Rareplanes model of de-
veloping a novel dataset in conjunction with addressing fun-
damental questions about the utility of the new dataset is a
paradigm that merits replication. Further details are available
in the arXiv paper and blog series [20, 21, 22, 23].

Fig. 4: Effects of synthetic data for various training dataset sizes
in the Rareplanes dataset. The green (synthetic augmented) models
clearly outperform the orange baseline (real data only) models for
rare objects (from Figure 5 here).

Fig. 5: Road network extraction performance as a function observa-
tion angle (from Figure 5 here).

2.6. Observation Angle

In many scenarios where timeliness is key, remote sensing
imagery cannot be taken directly overhead (nadir), necessi-
tating data collection from an off-nadir perspective. The vast
majority of remote sensing datasets and models are solely
nadir, however, leaving a significant gap in understanding as
to how state-of-the-art algorithms perform in non-ideal sce-
narios such as high off-nadir imagery. To address this ques-
tion CosmiQ (along with its SpaceNet partners) launched the
SpaceNet 4 dataset and challenge (see the ICCV paper for
further details). The dataset consisted of multiple collections
of the same location (Atlanta, Georgia) as a satellite passed
overhead, yielding 27 different nadir angles in the dataset.
This allowed the CosmiQ Works team (and SpaceNet 4 com-
petitors) to quantify the drop in building footprint detection
performance as the “quality” of imagery degrades as imagery
becomes more and more skewed.

Subsequently, the CosmiQ Works team performed a sim-
ilar analysis of the Atlanta dataset, this time extracting road
networks from highly off-nadir imagery, demonstrating the
ability to identify road networks and features at off-nadir an-
gles (see Figure 5). Somewhat surprisingly, road networks
appear easier to extract at high off nadir angles than build-
ings, see the arXiv paper for further details. The performance
benchmarks established by both the buildings and roads stud-
ies have the potential to inform collection management pro-
cedures, as well as satellite constellation design.

2.7. Label Quality

High quality labels are critical for machine learning, even if
quantifying the effects of low-quality labels can be a chal-
lenge. This is exactly what the CosmiQ Works team set out
to do in comparing road network extraction performance for
models trained on crowd-sourced OpenStreetMap labels, ver-
sus highly curated SpaceNet labels (≥ 60% improvement).
See the WACV paper for greater detail.
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Fig. 6: Detection performance as a function of building footprint
area for the top SpaceNet 6 models (from Figure 2 here).

2.8. Object Properties

Breaking down performance according to the properties of
objects within the dataset is another axis worth exploring.
One example of this is exploring road network extraction per-
formance based upon features such as road length, maximum
speed, and intersection density [24]. Building identification
performance as a function of building area and volume is also
quite informative, and was explored in both SpaceNet 4 [25],
and SpaceNet 6 [26], see Figure 6.

2.9. Metric Parameters

Determining the correct measure of utility is critical for
gleaning meaningful insights into machine learning mani-
folds. Even simple measures such as the true positive rate are
often subject to multiple parameters, as how one defines “true
positive” often varies depending on the required prediction
fidelity. Accordingly, CosmiQ explored how metric param-
eters influence metric scores (i.e. utility) in the geospatial
domain. For example, the road extraction APLS curve can
be quantified as a function of allowed buffer [27]. Figure 7
displays object detection scores for the SpaceNet 4 dataset as
building outline IoU is increased; curves such as these help
inform expectations and requirements for end users.

2.10. Speed Performance Tradeoffs

The final piece of the utility manifold we will discuss is the
tradeoff of algorithm performance and runtime. Frequently,
the state-of-the-art in machine learning is advanced by adding
layers of complexity to existing models, thereby netting a
2 − 5% improvement in the metric of choice (and an aca-
demic paper), but at the expense of increased runtime. Such
“advances” sometimes turn out to be detrimental for real-
world use cases due to slower speeds and increased fragility.
These tradeoffs were analyzed for the SpaceNet 5 road net-
work and travel time challenge [28[ (see Figure 8), as well as

Fig. 7: Detection performance as metric the IOU metric parameter
is varied (from Figure 2 here).

Fig. 8: Speed/performance tradeoff analysis for various road detec-
tion models (from here).

the SpaceNet 6 synthetic aperture radar (SAR) building ex-
traction challenge [29]. These analyses allow potential users
of the open source code provided by these efforts to bench-
mark performance and to determine the appropriate algorith-
mic approach based on their performance requirements and
computational environment.
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3. RECOMMENDATIONS

Many of the research questions and lessons learned from
CosmiQ Works’ geospatial analytics discussed above trans-
late readily to new domains. For example, one might ask:
what is the label fidelity required for natural language or
audio data (such as the VOiCES dataset)? Or, can poorly la-
beled cyber datasets be successfully augmented or pruned to
improve dataset quality and prediction confidence, and if so
what dataset axes matter most? Or, how does edge computing
device sensor performance very with resolution, frequency,
and weight? Irrespective of domain, myriad questions can
be asked once a suitable measure of utility is decided upon,
and quite often the least interesting (though most commonly
pursued) research topic is building a machine learning model
that maximizes utility without addressing the underlying
feature space that determines performance. Studying the per-
formance curve along various axes yields far more insights
than just a single datapoint denoting maximum performance.
Combining multiple facets together also permits quantifica-
tion of the complex multi-dimensional utility manifold. This
concept is illustrated in Figure 9. Some axes are univer-
sally important such as data resolution, label resolution, and
dataset size. Measures of utility will of course vary across
domains, but it is possible that manifolds may hold predictive
power across domains.

Creating new datasets is often a critical piece of manifold
studies, as discussed further in the Appendices. For context,
precisely zero of the examples above had the luxury of ana-
lyzing existing datasets; in all cases answering the pertinent
question necessitated the curation of a new dataset with the
requisite features.

This freedom from hyperfocus on incremental algorithmic
improvement (i.e. academia), or software development in sup-
port of marketable products (i.e. industry) allows applied re-
search organizations (e.g. IQT Labs) to focus on underserved
research areas. This document posits that such organizations
will have maximal impact by rigorously exploring the fea-
ture space that determines machine learning performance on
high quality datasets. Accordingly, projects should be struc-
tured around dataset creation and the subsequent study of the
machine learning utility manifold. Quantifying the extent to
which machine learning performance depends upon and influ-
ences dataset size, fidelity, quality, veracity, and provenance
has the potential to positively impact the complex missions
of a multitude of customers at both the tactical and strategic
levels.
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Fig. 9: Computing vehicle detection performance over multiple res-
olutions and geographies illustrates the utility manifold surface for
these parameters (adapted from here).
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Appendix A: Dataset Creation

The majority of recent AI advances have been in the realm
of supervised machine learning, meaning that high quality la-
beled datasets are necessary. While gathering raw data is of-
ten relatively simple, ensuring that this data is of high quality
can be a significant challenge. Furthermore, assigning labels
to the raw data is often a very time consuming and expen-
sive exercise. Yet despite the challenges, dataset creation re-
mains something of a low hanging fruit in the machine learn-
ing workflow for a number of reasons.

First of all, relatively few open source datasets exist that
are appropriately labeled and structured for machine learning.
Many commercial entities understandably regard labeled data
as a resource to be zealously protected, as a means to give
their researchers an advantage in the quest to create ever more
performant algorithms. Yet even entities with large corpora
of proprietary data find significant value in open datasets. A
canonical example of this is the ImageNet dataset and compe-
tition, which over the course of many years posed a number of
computer vision challenges to the research community. The
staggering amount of resources entities like Google and Mi-
crosoft poured into competing in ImageNet underscores the
utility provided by open source datasets. Data collection in
small commercial markets (e.g. sparsely populated geogra-
phies) is sporadic at best in both academia and industry, even
though such markets may be of great interest to many parties.

Secondly, new datasets have the potential to launch en-
tirely new avenues of research. This provides applied re-
search labs the opportunity to help spur research in areas cur-
rently underserved by existing academic or industry projects.
An example of this is the increasing quantity of academic re-
search devoted to road network extraction from satellite im-
agery, spurred on in part by the SpaceNet 3 and SpaceNet 5
datasets and public data science challenges.

Third, open source curated datasets are necessary for
product comparison and evaluation. Evaluation of new prod-
ucts, both from industry and our customer base, is often done
on proprietary datasets, thereby preventing meaningful com-
parison to alternative or competitory solutions. Quantitative
comparison of algorithmic performance requires evaluating
on a shared common test set. Establishing such gold standard
test sets serves not only the research community, but periph-
eral institutions as well (e.g. strategic investors seeking to
assist and evaluate technology startups).

Finally, datasets have the potential for outsized outreach,
marketing, and publication impact. Properly curated datasets
often have a shelf life far longer than algorithms. While aca-
demic publishing is not the foremost priority of many orga-
nizations, it is nevertheless often important from a reputation
standpoint; the potential for citations within academia, indus-
try, and government tends to be higher for dataset papers than
algorithm papers given all the subsequent work that uses said
dataset.

It is important to note that research labs will likely need
to be heavily involved in any dataset project in order to en-
sure quality, even if data collection and labeling is contracted
out. Labeling schemas and tolerances are not easily altered af-
ter the fact, necessitating thoughtful input and feedback from
research personnel prior to and during data collection and la-
beling efforts. While a high quality dataset has the potential
for significant impact given all reasons discussed above, cre-
ation/curation of a low quality dataset would actually prove
counterproductive. For further specifics, see Appendix B for
a dataset creation case study.

Appendix B: SpaceNet Dataset and Challenge
Series
SpaceNet is a nonprofit LLC managed by CosmiQ Works
dedicated to accelerating open source, artificial intelligence
applied research for geospatial applications, specifically foun-
dational mapping. Over the course of 7 challenges from 2016-
2020, the SpaceNet partnership has released open source
permissively licensed satellite imagery and labels over 100+
cities across all six inhabited continents. This imagery com-
prises both electro-optical (EO) imagery, as well as synthetic
aperture radar (SAR) returns. The dataset encompasses over
10,000,000 building footprint labels and over 20,000 km of
road labels, and has been downloaded over half a billion times
worldwide. Imagery formats and locations are determined by
the CosmiQ Team, thus ensuring data collection aligns with
the desired goals of each challenge. Data labels are rigorously
validated by multiple expert parties, with the labeling schema
defined and verified by the CosmiQ Works team; heavy in-
volvement in the data collection and labeling efforts has
proven essential to establishing SpaceNet as a gold standard
dataset. To push the state of the art in geospatial analytics,
6 public data science challenges have been run with the ever
increasing dataset, as summarized in Figure 10. The winning
algorithms are open sourced (33 in total as of August 2020),
with $300,000 USD in prize money distributed. Scores of
academic articles have cited SpaceNet publications, and over
30 publications have used SpaceNet data in their research.

The open source dataset and winning algorithms have
been ingested by multiple organizations, and evaluation met-
rics implemented for the SpaceNet challenges have become
the de-facto standard for multiple applications. The seventh
SpaceNet challenge will incorporate the temporal dimension
into the challenge for the first time, and has been accepted
into the competition track for the prestigious NeurIPS 2020
conference.

More information is available at spacenet.ai, the SpaceNet
academic papers (SpaceNet 1-3 (arXiv), SpaceNet 4 (ICCV),
SpaceNet 5 (WACV), SpaceNet 6 (CVPR EarthVision), as
well as a multitude of blogs on The DownLinQ.
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Fig. 10: SpaceNet Challenge series details.
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